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SUMMARY

This work deals with the development of a fast three-dimensional numerical strategy for the simulation of
viscous fluid flow in complex mixing systems. The proposed method is based on a distributed Lagrange
multiplier fictitious domain method and the use of the low-cost MINI finite element. Contrary to the
previous fictitious domain method developed by our group a few years ago, the underlying partial
differential equations are solved here in a coupled manner using a consistent penalty technique. The
method is discussed in detail and its precision is assessed by means of experimental data in the case
of an agitated vessel. A comparison made with our existing fictitious domain method and its decoupled
Uzawa-based solver clearly shows the advantages of resorting to the MINI finite element and fully coupled
solution strategy. The new technique is then applied to the simulation of the flow of a Newtonian viscous
fluid in a three-blade planetary mixer in the context of the production of solid propellants. Copyright q
2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The mixing of very viscous fluids in mechanically agitated vessels is a common operation in
numerous industries. One example is the mixing of very fine solids at high loading rates in a viscous
polymeric matrix, which finds applications in the production of propellant pastes for aerospace and
automobile industries. These materials are prepared through fabrication cycles that are complex,
costly and time consuming. As discussed in Tanguy et al. [1], the manufacturing line is subjected
to the following two central difficulties:

• the fluid is paste-like and highly viscous. Hence, the mixing is achieved in laminar regime;
• small quantities in the formulation must be thoroughly distributed and dispersed to yield the
right mechanical and combustion properties.

The operation of blending very viscous pastes may be achieved by four different mixing systems:
vertical planetary kneaders, horizontal multiple impeller kneaders, helical ribbon impellers and
twin-screw extruders. Since the mid-1960s, solid rocket propellant mixing has been often carried
out through vertical planetary mixers.

The analysis of mixer performance can be done through the evaluation of macroscopic quan-
tities such as mixing time or power draw. Evaluating these quantities experimentally is a time-
consuming and expensive task. Three-dimensional computational fluid dynamics (CFD) simulation
then appears as a useful alternative for the investigation of a mixing process. However, the biggest
challenge for the modelling of mixing with a planetary mixer such as the three-blade planetary
kneader is that the geometry contains moving parts with complex kinematics, which entails the
generation of a new mesh at every time iteration when using standard CFD (finite element or finite
volume) techniques.

In the literature, several numerical simulation techniques within the finite element method
framework have been proposed to eliminate the need for repetitive remeshings.

Bertrand et al. [2] introduced the virtual finite element method (VFEM), a fictitious domain
method that is based on optimization techniques as first proposed by Glowinski et al. [3]. In the
context of fluid flow in agitated tanks, the internal blades are discretized using control points on
which kinematics constraints are imposed and introduced in the equations of change by means of
Lagrange multipliers. Bertrand et al. [4] and Tanguy et al. [1, 5–7] used the VFEM technique to
simulate mixing flows in a twin-blade planetary mixer. Each time, the numerical results were in
very good agreement with experimental data.

Jongen [8] and Jongen et al. [9] used a modified version of the VFEM implemented in FIDAP
(ANSYS) for characterizing mixing flows in various batch mixers, one of which was a planetary
mixer. More particularly, they studied the influence of mixer configurations and operating conditions
on the shear rate exerted on viscous pastes.

Avalosse and Crochet [10] proposed the so-called mesh superposition technique (MST). In this
method, a static mesh representing the motionless part of the flow domain and one additional
dynamic mesh are superimposed at every time step of a transient simulation. The velocity of
these moving parts is taken into account in the equations of change by a penalty formulation.
This method has been used in Polyflow (ANSYS) to model the flow of a viscous fluid in a twin-
screw extruder in two dimensions [10] and in three dimensions [11]. More recently, Connelly and
Kokini [12] used the MST to simulate the three-dimensional flow of a viscous fluid in a sigma blade
mixer.
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More recently, Gartling [13] extended the sliding mesh (SM) technique within a finite element
framework to take into account moving objects in the computational domain by the recourse to a
penalty technique. He showed the effectiveness of the method by simulating fluid flow in a rotating
three-blade impeller system.

Also of interest is the work of Clifford et al. [14]who investigated experimentally the effect of the
Reynolds number on a planetary mixer. Finally, Delaplace et al. [15, 16] presented a dimensional
analysis for the flow in a TRIAXE R© system consisting of a pitched blade turbine mounted on two
almost perpendicular rotational axes.

Except for the SM technique, all the methods mentioned above belong to the class of fictitious
domain methods and are well adapted to the treatment of complex geometries with evolving
topologies. They are, however, rather time consuming, in particular if they are to be used for
industrial applications.

The objective of this paper is to introduce a variant of the VFEM that we introduced a few
years ago [2], and to show that it is both fast and robust for the simulation of viscous fluid
flow in complex mixing systems such as the planetary mixers. This distributed Lagrange multi-
plier fictitious domain method is based on the use of the inexpensive MINI finite element and,
contrary to our previous fictitious domain method (VFEM) and its decoupled Uzawa solver, it
resorts to a consistent penalty technique for solving the underlying partial differential in a coupled
manner.

First, the method is presented in detail. Next, its precision is assessed by means of experimental
data that were obtained in the case of a Maxblend mixer, with and without baffles. A comparison
is also made with our existing VFEM. Finally, our new technique is applied to the simulation of
the flow of a Newtonian viscous fluid, typical of a solid propellant, in an industrial three-blade
planetary mixer. The solutions obtained are all discussed in terms of both accuracy and CPU
time.

2. EQUATIONS OF CHANGE

The flow of an incompressible viscous flow in a computational domain � with boundary �
containing a moving part �∗, as presented in Figure 1, is governed by the momentum and continuity
equations:

�

(
�v
�t

+v ·gradv
)

+div�+grad p= f in � (1)

divv=0 in � (2)

v=v∗ on �∗ (3)

where �∗ is the boundary of �∗ and where (3) can be viewed as a kinematic constraint to be
satisfied by the solution.

In these equations, v is the velocity, v∗ the prescribed velocity on the moving part, f a body
force, p the pressure and � the fluid density. The stress tensor � is a function of the rate-of-strain
tensor �̇, as expressed by a rheological equation of state:

�=−2�(|�̇|)�̇ (4)
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Ω
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Ω∗v = v* 

Figure 1. Computational domain � with an internal part �∗ of boundary �∗.

with

�̇= 1
2 [gradv+(gradv)T] (5)

In this work, the Newtonian model is considered, �(|�̇|)=�, and (1) becomes the Navier–Stokes
equation:

�

(
�v
�t

+v ·gradv
)

+�∇2v+grad p= f (6)

Appropriate initial conditions and boundary conditions on � must also be applied for mathematical
well posedness.

3. NUMERICAL STRATEGY

For three-dimensional fluid flow problems involving internal moving parts, the VFEM considers
the moving objects in the computational domain as a set of control points on which kinematics
constraints are applied. These are then enforced in the equations of change by the use of Lagrange
multipliers and constrained optimization techniques. If we first consider the application of this
method to a steady-state Stokes problem (omitting the acceleration and inertia terms in (1)), the
following saddle-point problem results:

inf
v∈[H1

0 (�)]3
sup

p∈L2(�)

sup
�∈[L2(�∗)]3

L∗
rs(v, p,�) (7)

where �∈[L2(�∗)]3 is the Lagrange multiplier representing the kinematics conditions on the
boundary �∗ of the internal moving part and L∗

rs corresponds to the Lagrangian:

L∗
rs(v, p,�)= Lr (v, p)−

∫
�∗

�·(v−v∗)d�+ s

2

∫
�∗

|v−v∗|2 d� (8)

Lr (v, p)= �

2

∫
�

|gradv|2 d�−
∫

�
pdivvd�−

∫
�
f ·vd�+ r

2

∫
�

|divv|2 d� (9)
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The Euler–Lagrange equations corresponding to this problem are given by

a(v,�)=(f,�)+b(�, p)+(�,�)�∗ ∀�∈[H1
0 (�)]3 (10)

b(v,�)=0 ∀�∈L2(�) (11)

((v−v∗),	)�∗ =0 ∀	∈[L2(�∗)]3 (12)

where

a(v,�)=�
∫

�
gradv ·grad�d� (13)

b(v,�)=
∫

�
�·divvd� (14)

and (·, ·)� is the standard scalar product in L2(�):

(u,v)� =
∫

�
u·vd� ∀u,v∈L2(�) (15)

Note that the inertia term can be added formally to (10) if needed. More details about the VFEM
can be found in Bertrand et al. [2].

In the present work, the low-order P+
1 –P1 (MINI) tetrahedral element is used to approximate the

velocity vh ∈Vh and the pressure ph ∈ Ph . It is a stable element owing to the addition of a bubble
function that can be eliminated by static condensation to reduce CPU time [17]. The Lagrange
multiplier �h ∈�h is discretized using Dirac shape functions following Bertrand et al. [2]. The
system of Equations (10)–(12) can be solved by means of different techniques.

3.1. Decoupled approach

In Bertrand et al. [2], Equations (10)–(12) were solved in a fully decoupled manner using the
Uzawa method. To speed up the solution process, it is proposed in the current work to resort to
partial decoupling, wherein the velocity and pressure are solved for in a coupled manner through
a penalty technique, and the Lagrange multiplier is obtained as in Bertrand et al. [2] through the
Uzawa algorithm. This strategy implies that (11) is replaced by

b(vh,�h)=− 1


p
(ph,�h) ∀�h ∈ Ph (16)

where 
p, a large number, is the penalty parameter in pressure. Poor choices of 
p can have a severe
consequence on the validity of the computed solution. The choice of this parameter is submitted to
limitations, as discussed in Reddy [18], Pelletier et al. [19] and Langtangen et al. [20]. In theory,
the larger the value of 
p, the closer (16) gets to the incompressibility condition but the larger the
condition number of the associated matrix system and, consequently, the slower the convergence
of the iterative method used to solve this matrix system. In this work, 
p was scaled with respect
to fluid viscosity and mesh size and set as large as possible while ensuring that mass is conserved
in all simulations. The overall algorithm in its matrix form is given in Figure 2. The meaning
of the different terms can be deduced straightforwardly from (10)–(12). U,P and K are vectors
that represent the velocity, the pressure and the Lagrange multipliers, respectively. A stands for
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Figure 2. Solution algorithm for the virtual finite element method and the decoupled approach.

the diffusion matrix, B stands for the divergence matrix and F accounts for the body force. H is
related to the VFEM. Note that, in practice, the role of the loop (in n) is two-fold as it serves
to converge the Lagrange multiplier but can also be used to implement a fixed-point method (or
Newton’s scheme) when the inertia term is added to the momentum equation (10).

This solution strategy has been used in our group to simulate fluid flow in mixing systems and
a variety of impellers in a satisfactory manner [21, 22]. It appears that one limitation is that the
Uzawa algorithm requires a large number of fixed point iterations to converge. This observation
has provided the impetus for the development of a fully coupled solution strategy, which is
introduced next.

3.2. Fully coupled approach

With the fully coupled approach method, the velocity vh , the pressure ph and the Lagrange
multiplier kh are all solved simultaneously by penalization. Accordingly, Equations (11) and (12)
are replaced by

b(vh,�h)=− 1


p
(ph,�h) ∀�h ∈ Ph (17)

((vh−v∗),	h)�∗ =− 1


�
(�h,	h)�∗ ∀	h ∈�h (18)

where 
p and 
� are penalty parameters. In practice, values for these parameters were set in a
similar way as that in the previous sub-section. The resulting overall algorithm in its matrix form

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:427–449
DOI: 10.1002/fld



FICTITIOUS DOMAIN METHOD FOR MODELLING VISCOUS FLOWS 433

 

Figure 3. Solution algorithm for the virtual finite element method and the fully coupled approach.

is given in Figure 3. The meaning of the different terms can be deduced easily from Equations
(10)–(12). U,P and K are vectors that represent the velocity, the pressure and the Lagrange
multiplier, respectively. A stands for the diffusion matrix, B stands for the divergence matrix and
F accounts for the body force. KKU is related to the VFEM. Note that, contrary to the decoupled
approach, the loop (in n) is only required when the inertia term is added to the momentum equation
(10) in order to implement a fixed-point method or Newton’s scheme.

The two solution strategies presented in this section were implemented in finite element software
POLY3DTM from Rheosoft Inc. Owing to their large size, the underlying linear systems were
solved using either the conjugate gradient method in the case of symmetric matrices (e.g. Stokes
problem) and the Bi-CGSTAB or TFQMR methods in the case of unsymmetric matrices (e.g.
Navier–Stokes problem with Newton’s scheme). Incomplete factorization was used in all cases as
a preconditioner.

The relative accuracy and speed of the new MINI-based VFEM is next assessed through experi-
mental data obtained for mixing systems. Before, a quick discussion about mixing characterization
is presented.

4. MIXING CHARACTERIZATION

One macroscopic quantity that is often used to characterize a mixing system is the power consump-
tion P of the impeller, which can be calculated through an energy balance over the computational
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domain:

P=
∫

�
� : �̇d� (19)

In the field of mixing, it is also common to compare different impellers on the basis of dimensionless
number Kp, the value of which is constant in the laminar regime. It is defined as

Kp = P

�N 2D3
(20)

where N is the impeller rotational speed and D its diameter. Introducing the Reynolds number for
mixing systems

Re= �ND2

�
(21)

the following expression for Kp can be established:

Kp =ReNp (22)

where

Np = P

�N 3D5
(23)

is the dimensionless power number. In practice, Kp can be evaluated by a regression technique on
a set of (Re,Np) data points obtained experimentally or via CFD. The reader is referred to Paul
et al. [23] for more information on mixing.

5. ACCURACY OF THE MINI-BASED VFEM

In this section, the accuracy and speed of the MINI element will be first investigated with a
standard finite element method in the case of a vessel mechanically agitated with a Maxblend
impeller without baffles using experimental data as well as numerical results obtained with another
finite element type, the discontinuous pressure P+

1 –P0 element. Next, the performance of the new
MINI-based VFEM of the previous section will be investigated by comparing the results obtained
with it to experimental data and to those obtained with the P+

1 –P0 element. The reader is referred
to Fradette et al. [24] and Iranshahi et al. [25] for more details about this mixing system, and to
Bertrand et al. [26] for a description of the P+

1 –P0 element.
The Maxblend mixer (Sumitomo Heavy Industries‡), shown in Figure 4, is composed of a bottom

paddle on which lies a grid-like structure. The paddle has been designed to generate efficient flow
circulation while the role of the grid is to provide good dispersing capability in the case of the
presence of a second phase. The Maxblend impeller represents an interesting alternative to close-
clearance impellers. Table I summarizes the dimensions of the 190-l mixing system considered in
this work.

‡http://www.shi.co.jp/maxblendclub/e-index.html.
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Figure 4. Schematic of the Maxblend impeller in a baffled configuration.

Table I. Dimensions of the Maxblend impeller.

Tank Impeller Bottom gap

T =0.60m D=0.45m c=10mm
H =0.72m
W =0.047m

First, the accuracy of the MINI element is investigated with a standard finite element method.
For this purpose, the Maxblend impeller system is considered in an unbaffled configuration in
the case of Newtonian fluids flowing in laminar regime. For the solution of this problem, it was
decided to consider the viewpoint of an observer attached to the moving impeller. As explained
by Tanguy et al. [27], the use of this Lagrangian frame of reference makes the imposition of the
boundary conditions much easier on a finite element mesh. The boundary conditions are defined
by the following:

1. a no-slip condition on the impeller;
2. the rotational speed � on the vessel walls;
3. the surface of the fluid is considered flat.

As the frame of reference is non-Galilean (the observer is in rotation with the impeller), the
momentum equations must be complemented by the centrifugal and Coriolis forces. This frame
of reference yields a steady-state fluid flow problem that is faster to solve than a transient one,
provided the flow is fully periodic.
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For the simulations, the angular velocity � was kept constant at 30 rpm and the Newtonian
fluid had a density � of 1350kg/m3 and a viscosity � varying from 10 to 136 Pa s, which yields
Re<10, indicative of a laminar regime for a mixing process. The flow of such fluids then obeys
the steady-state Stokes equations, that is Equation (1) without the acceleration and inertia terms.

The computational domain was discretized into 290 336 tetrahedra using I-DEAS (EDS)
(Figure 5). Solutions of the steady-state Stokes problem obtained with the standard finite element
method and the discontinuous pressure P+

1 –P0 element will be used for comparison purposes.
Table II gives the characteristics of the meshes generated for both the MINI and the P+

1 –P0
elements. Note that care was taken so that these meshes were fine enough to yield mesh-
independent results. A special non-uniform meshing strategy was required for modelling in a
suitable way the small clearance between the vessel wall and the impeller. More precisely, a fine
mesh was generated close to the bottom gap region between the impeller and the tank walls where
the highest shear rates are found. A coarser mesh was used elsewhere. It can be noticed that,
in the case of MINI element, the number of equations, after static condensation of the velocity
degrees of freedom located at the centroid of each finite element, is approximately one order of
magnitude smaller than that with the P+

1 –P0 element.
Simulations were performed on an IBM p690 computer and power draw values were computed

from the velocity fields obtained using (19). Figure 6 compares the numerical power curves obtained

Figure 5. Mesh of the Maxblend impeller system in an unbaffled configuration.
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Table II. Characteristics of the meshes generated for the Maxblend impeller
system in an unbaffled configuration.

Finite element Number of elements Number of nodes Number of equations

P+
1 –P1 (MINI) 290 336 346 193 0.2M

P+
1 –P0 290 336 941 549 2.12M

10

100

1000

1 10

Re

N
p

MINI P1+-P0 Experimental

Figure 6. Numerical and experimental power curves for the Maxblend impeller
system in an unbaffled configuration.

Table III. Simulation results for the Maxblend impeller system in an unbaffled configuration.

Average CPU Discrepancy with respect to
Type of results time (min) Kp the experimental Kp (%)

Experimental — 180 —

P+
1 –P0 120 176 2

P+
1 –P1 (MINI) 6 170 6

with the P+
1 –P0 and MINI elements to the experimental data of Fradette et al. [24]. First, it can

be readily noticed that each numerical power curve is in good agreement with the experimental
data. These results also comply with the mixing theory, which states that, in the laminar regime
(Re<10), the power curve exhibits a slope of −1 on a log–log scale. Next, the numerical Kp

values computed are 170 and 176 with the MINI and P+
1 –P0 elements, respectively, which are

very close to the value of 180 obtained experimentally. These results are summarized in Table III
that also gives the average CPU time for the simulations. These CPU times indicate that the MINI
element is 20 times faster than the discontinuous pressure P+

1 –P0 element for an almost equivalent
accuracy, which makes it very attractive for industrial applications.
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The accuracy of the MINI-based VFEM is next studied. For this purpose, four baffles were
added to the Maxblend mixer described above, which renders the fluid flow problem unsteady and
forces the use of the VFEM to avoid the need for repetitive remeshings. A Lagrangian frame of
reference, that of the impeller, was used, meaning that the baffles are in motion. Viscous fluids
identical to those described in the previous case were considered, the flow of which is laminar and
obeys the time-dependent Stokes equations, that is, Equation (1) without the inertia term.

The corresponding boundary conditions were as follows:

1. a no-slip condition on the Maxblend impeller;
2. the rotational speed � on the baffles;
3. the rotational speed � on the vessel walls;
4. the surface is considered flat.

The fluid was supposed at rest at t=0. From a numerical standpoint, the mesh generated previously
for the unbaffled configuration was used here in the VFEM to represent the vessel and the impeller.
A set of 6432 control points was generated using I-DEAS (EDS) to take into account the four
baffles (Figure 7). Note that the number of control points was adjusted with respect to the number

Figure 7. Mesh of the Maxblend impeller system in a baffled configuration.
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of finite elements, as explained in Bertrand et al. [2] and assessed by Rivera et al. [28], so that
the resulting problem does not become overconstrained.

The value of the time step for a simulation with the VFEM is known to affect the accuracy of
the solution and the stability of the model. For more details about this point, we refer the reader
to Iranshahi et al. [29]. In practice, a trade-off between CPU time and accuracy must be sought.
Here, the time step was set to 0.1s. Each simulation was performed for three full revolutions
(60 time steps). Table IV summarizes the CPU time required for a transient simulation with the
VFEM. Results in the case of the MINI element refer to the VFEM and the fully coupled solver,
whereas those for the discontinuous pressure P+

1 –P0 element were obtained with the VFEM and the
decoupled approach. As can be seen, the MINI-based VFEM introduced in this work outperforms
the P+

1 –P0/VFEM combination in terms of CPU time by a factor of 30.
As for accuracy, Figure 8 compares the numerical power curves to the experimental data of

Fradette et al. [24]. The experimental Kp value is 218. As in the previous case, each power curve
exhibits a slope of −1 on a log–log scale in the laminar regime (Re<10). The numerical Kp

values computed with the MINI and the P+
1 –P0 elements are 194 and 198, respectively. This

Table IV. Simulation results for the Maxblend impeller system a baffled configuration.

Average CPU time Discrepancy with respect to
Type of results per time step (min) Total CPU time Kp the experimental Kp (%)

Experimental — — 218 —

P+
1 –P0 decoupled approach 60 212 days 198 9

P+
1 –P1 (MINI) fully

coupled approach 2 2 h 194 11

10

100

1000

1 10

Re

N
p

MINI P1+-P0 Experimental

Figure 8. Numerical and experimental power curves for the Maxblend impeller
system in a baffled configuration.
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corresponds to a similar discrepancy of around 10% in both cases. In particular, it shows again the
efficiency of the MINI-based VFEM for the simulation of viscous fluid flow in industrial mixing
applications.

6. INDUSTRIAL FLOW IN A THREE-BLADE PLANETARY MIXER

The new MINI-based VFEM was next applied to the industrial case of the laminar flow of a
propellant-type highly viscous fluid in a three-blade planetary mixer. Planetary mixers are known
to provide a suitable bulk circulation and good homogenization for this type of fluid. Besides,
owing to their close-clearance nature, their scraping action leads to an efficient transfer of the
paste located at the periphery to the vessel bulk.

The three-blade planetary mixer is presented in Figure 9. It consists of a steel vessel of 50 US
gallons (around 200 l), two external scraping arms (twin-blade impeller) and one centered scraping
arm (four-blade impeller). The tank has a diameter of 0.53m and a height of 0.24m. The three
arms are mounted on a rotating carrousel, which guarantees that the whole volume of the vessel
is swept within one single revolution of the carrousel. The lateral surface of the mixer blades is
helical thus ensuring good pumping capability.

In this work, the two external impellers rotated counterclockwise at 30 rpm. The central impeller
rotated clockwise at 15 rpm. The rotational speed of the carrousel was set to 5 rpm. The speed
ratios between the external impellers and the central impeller, and between the central impeller
and the carrousel were equal to 2 and 3, respectively, which conforms to the design specifications.

Figure 9. (a) Three-blade planetary mixer with the blades on off-centered shafts and a central wheel shaft
(adapted from Kol’man-Ivanov and Shklovskaya [30]) and (b) motion of the blades.
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For the sake of completeness, Figure 10 shows the top view of the central impeller and one of the
two external impellers.

Solid rocket propellants are thermoset composite materials consisting of a ground oxidizer
dispersed into a rubbery matrix. Polypropylene glycol (PEG) and hydroxyl-terminated poly-
butadiene (HTPB) are the most frequent elastomer matrices. The blend is cross-linked by means
of a curing agent such as hexamethylene diisocyanate (HMDI). Rheological measurements have
shown that this type of paste exhibits a slight shear-thinning behavior so that, in practice, it can
be modelled as a Newtonian viscous fluid [7].

The paste considered in this study had a density � of 1800kg/m3 and a viscosity � of 400 Pa s,
typical of a propellant at the end of the kneading cycle in a planetary mixer. The flow of such
fluid under the operating conditions described above is laminar and is governed by the unsteady
Stokes equations.

The results obtained with the MINI-based VFEM and both the coupled and decoupled approaches
of Sections 3.2 and 3.1, respectively, will be compared with those obtained with the P+

1 –P0/VFEM
combination of Bertrand et al. [2] for which only the decoupled approach was used.

The computational domain was discretized into tetrahedra using I-DEAS (EDS). The clearance
between the external blades and the vessel wall is very small so that the highest shear rates

Figure 10. Top view of the central impeller and one of the two external impellers (adapted from
Kol’man-Ivanov and Shklovskaya [30]).
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Figure 11. Mesh for the three-blade planetary mixer.

Table V. Characteristics of the meshes generated for the three-blade planetary mixer.

Finite element Number of elements Number of nodes Number of equations

P+
1 –P1 (MINI) 169 882 202 115 0.1M

P+
1 –P0 169 882 549 340 1.26M

are expected to occur in these gaps. Consequently, a smaller mesh size was chosen for these
regions.

The mesh generated, which is shown in Figure 11, contains 169 882 elements. The corresponding
numbers of nodes and equations can be found in Table V for both the MINI and the P+

1 –P0
elements. All three impellers were taken into account by means of a total of 5507 control points.
This number was adjusted with respect to the number of finite elements in the static mesh so that
the problem is not overconstrained but that the distance between any two control points is small
enough to prevent fluid from penetrating into the blades. Initially, the fluid was assumed at rest.
A time step of 0.6 s was set for the transient simulations. This value ensures that one of the time
steps corresponds to the smallest blade/wall gap. The motion of the three blades of the planetary
mixer is symmetric and the flow inside is periodic. All the simulations were performed for a half
revolution of the carrousel only, which corresponds to 10 time steps, to show that the proposed
coupled approach works.

Figures 12 and 13 display, respectively, the norm of the velocity field at the third and seventh
time steps on three different cross sections, for the MINI and the P+

1 –P0 elements. These two
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Figure 12. Norm of the velocity field at the third time step on three different cross sections.

time steps correspond to positions of the kneading blades where the clearance to the vessel wall is
the lowest (third) and the highest (seventh). Generally speaking, a good agreement can be noticed
for these two time steps. In fact, a closer investigation reveals that the MINI element slightly
overestimates with respect to the P+

1 –P0 element (by around 5%) the maximum of this scalar
field. In particular, one may notice, for the MINI element only, the presence of a peak between the
central blade and one of the external blades. These figures also show that the three-blade planetary
mixer exhibits good scraping capability on all three cross sections, as evidenced by the higher
velocity gradients found in neighborhood of the blades and in the area between the external blades
and the central blade.

Figures 14 and 15 display, respectively, the axial component of the velocity field (w) of
the mixer at the third and seventh time steps on the mid-height cross section. A good agree-
ment between both elements can be noticed although the MINI element seems to predict larger
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Figure 13. Norm of the velocity field at the seventh time step on three different cross sections.

Figure 14. Axial component of the velocity field at the third time step on the mid-height cross section.
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Figure 15. Axial component of the velocity field at the seventh time step on the mid-height cross section.

values of the axial component of the velocity in some areas. Owing to the high viscosity of the
paste, efficient pumping is found, as expected, in rather small areas located near the impellers.
The motion of the helical blades compresses the paste in these zones, which is then pumped
upward.

Figures 16 and 17 show the shear stress (xy-component of the stress tensor) on the mid-height
cross section for both elements at the third and seventh time steps, respectively. Here again, a
good agreement between the MINI and the P+

1 –P0 elements can be observed. As expected, the
maximum shear stress is found where the clearance value with the wall is the lowest. Moreover,
the maximum obtained at the third time step is higher than that at the seventh time step, which
is due to a smaller blade/wall gap in the former case. This point emphasizes the importance of
having a mesh with enough elements in the gap region between the blades and the wall to obtain
an accurate solution. A zone of high shear stress can also be noticed in the center of the bulk,
more precisely in the clearance between the internal and the external blades.

The power consumption was computed through a macroscopic energy balance following (19).
Figure 18 shows how the power draw varies over a half period of the carrousel. A particularity
of planetary mixers is that the clearance between the blades and the vessel wall is a periodic
function of time. Given that the volume average shear stress is itself a function of the blades-to-wall
distance, the power consumption is also time dependent. One may notice that the power curves
obtained with the MINI and the P+

1 –P0 elements are very close, with a relative difference smaller
than 10%.

The CPU time required for each transient simulation is presented in Table VI. It can be seen that
the MINI-based VFEM with the fully coupled approach is 7 times faster than with the decoupled
approach, and that this former strategy outperforms the P+

1 –P0/VFEM combination with the
decoupled approach by a factor of more than 100!

7. CONCLUSION

The objective of this work was to develop a fast three-dimensional numerical strategy for the
simulation of viscous fluid flow in complex mixing systems. The method that was introduced is
based on the virtual finite element method (VFEM) of Bertrand et al. [2] and the inexpensive
MINI finite element. Two methods were also discussed for the solution of the underlying partial
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Figure 16. Shear stress on the mid-height cross section at the third time step.

differential equations: (i) a decoupled approach wherein the velocity and the pressure are solved
for in a coupled manner through a penalty technique, and the Lagrange multiplier is obtained
as in Bertrand et al. [2] through the Uzawa algorithm, and (ii) a fully coupled approach that
solves for the velocity, the pressure and the Lagrange multiplier associated with the kinematics
constraints in a fully coupled manner by means of a consistent penalty technique. The accuracy of
the MINI-based VFEM was tested successfully against experimental data in the case of a Maxblend
impeller system. A comparison was also made with the P+

1 –P0/VFEM combination of Bertrand
et al. [2]. Our new technique was then applied to the simulation of the flow of a Newtonian
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Figure 17. Shear stress on the mid-height cross section at the seventh time step.

viscous fluid in a three-blade planetary mixer. The results obtained show that the MINI-based
VFEM is a suitable strategy for simulating the flow of viscous fluids in complex mixing systems
since its accuracy is comparable with that obtained with the P+

1 –P0/VFEM at a fraction of the
cost.

Finally, preliminary results (not shown in this paper) in the case of the Maxblend impeller
system have revealed that the accuracy of the MINI-based VFEM tends to decrease when the
Reynolds number is increased above 10, that is outside of the laminar regime. Two possible causes
for this are the use of penalization and ill-conditioning of the corresponding global matrix (e.g.
Pelletier et al. [19]), or some locking phenomena, as previously observed in the case of low-order
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Figure 18. Power consumption of the three-blade planetary mixer.

Table VI. CPU time for the three-blade planetary mixer.

Average CPU time
Finite element per time step (min) Total CPU time

MINI-based VFEM+coupled approach 4.5 45min
MINI-based VFEM+decoupled approach 30 5 h
P+
1 –P0/VFEM+decoupled approach 504 312 days

finite elements when a penalty technique is used (e.g. Bercovier [31]). This will be the topic of
future work.
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